Home

High-energy-density (HED) physics concerns the behaviour of systems roughly characterized as having a pressure above one million atmospheres (equal to 0.1 TPa). More precisely, one might say that it is the laboratory study of matter having a pressure above 0.1 Mbar (10 GPa) and containing free electrons not present in the solid state, and the use of experimental systems that produce such conditions.This encompasses a wide range of conditions. Already the realm accessed by current and near-term experiments is vast, including temperatures from zero (at high enough density) to perhaps 1012K, and densities from less than 10-5 (at high temperature) to 10times the density of water. In the natural universe, one finds HED conditions in the big bang, in stars, in planets, and in dynamical systems such as supernovae and gamma-ray bursts. Beyond that, HED systems are the only laboratory environments that access high-Mach-number shock waves in strongly ionized matter, conditions also common to many observed astrophysical phenomena. The anticipated technical applications are also diverse, ranging from inertial confinement fusion to particle acceleration for science or medicine, to sources of light or neutrons for industrial purposes.

Important information

  • Students from the EU looking for financial travel support please follow this link for more details about how to apply
  • Students from the USA looking for financial travel support please follow this link for more details about how to apply

Key dates

Abstract submission deadline [EXTENDED]:

20 December 2018 (2pm)

Registration deadline:

21 March 2019


Organised by the IOP Plasma Physics group


Sponsored by:

Please click here for a complete list of sponsors.


Related conferences